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Abstract
The set of weak links connecting superconducting grains of ceramics forms a random
three-dimensional Josephson net. The temperature and size dependences of the critical currents
in bismuth-based and yttrium-based high-temperature superconducting ceramic samples
consisting of randomly oriented grains have been studied in zero magnetic field. It is shown that
the critical current in samples having various cross-sectional shapes can be presented as the
product of temperature and size dependent factors. The transport critical current is a
homogeneous function of the cross-sectional shape dimensions. The size dependent factor is a
universal function describing properties of the weak link Josephson net. The exponent of this
function is independent of the temperature, the type of superconducting material, the existence
(or lack) of a Josephson net in the sample, and the method used for varying the sample
cross-section. The transport critical current density and induced magnetic field are
homogeneous functions of coordinates. It is shown that the critical current density has a power
law dependence on the magnetic field.

1. Introduction

High-temperature superconducting (HTSC) ceramics are
polycrystalline materials consisting of superconducting grains
with all possible orientations. The passage of a transport
current through this material is possible due to the weak links.
The intra-grain critical current in ceramics is much greater than
the inter-grain critical current [1]. Link properties, impurity
segregation, shape, and mutual orientation of grains are the
causes of a sharp decrease of transport critical current. Several
models have bean proposed for explaining the critical current
flow in ceramics. If no texturing or special aligning processes
are used, then ceramics consisting of superconducting grains
with all possible orientations represent the three-dimensional
random Josephson network of weak links [2–4].

In the absence of an external magnetic field, the medium
surrounding the sample is isotropic. This considerably
simplifies the system under study and makes it possible to
elucidate a number of its important properties. Nevertheless,
magnetic field induced by the transport current is present in
the system. The distribution and value of the transport critical

current density in the system are determined by the magnetic
field. The distribution of this field in the sample depends on the
critical current value and cross-sectional shape of the sample.
As a result, a size effect is observed: the dependence of the
critical current Ic on the size of the sample cross-section. Many
authors have hence investigated a size effect [4–11].

The purpose of the present work is to investigate
various 3D Josephson nets composed of randomly oriented
superconducting grains. To accomplish this goal, we
investigated the critical current in Y- and Bi-based ceramics.
The induced field can be controlled by varying the transverse
sizes of the sample. We have used this variation as a tool for
studying the critical state in Josephson networks. Our results
indicate that the critical current, its density, and its induced
magnetic field in the network obey the scaling law.

2. Experimental details

The samples used were prepared from high-purity oxides and
carbonates. Mixed components were powdered, pressed and
calcined in air. Then the tablets were ground up, pressed and
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Figure 1. Diagram illustrating the variation of the cross-section of
sample 1.

calcined in air a few times. No texturing or special oxidation
processes were used. Some details are given in [12].

The samples under study were in the form of toroidal
rings. The rings were machined with a lathe using special
lathe tools. Sample 1 (Y-123) and sample 2 (Bi-2223) had
rectangular cross-sectional shapes. Sample 3 had a trapeziform
cross-sectional shape and contained two superconducting
phases (Bi-2212 and Bi 2223). Using a two-phase sample
permitted the study of critical currents in two different
Josephson nets in the same sample to be carried out. The
superconducting transition temperatures (Tc) of samples 1, 2, 3
were 91 K, 106 K, and 99 K respectively.

The critical current was measured using the contactless
transformer technique applied by many researchers to study
high-temperature superconductors [7, 8, 13–15]. It must be
noted that Ic was measured in the absence of an external
field. In our experiments, a ring-shaped sample, along with
the primary winding (with n1 turns) and measuring winding,
was placed in a pot ferrite core. As the value of the primary
alternating current I1 (14 Hz) grew, the current in the ring
varied so as to keep the magnetic flux accumulated by the
central limb of the core and closing through the lateral and end
walls constant and equal to zero. Consequently, the magnetic
induction and magnetic field within the pot core remained
zero. Therefore, the sample was subjected only to the magnetic
field of the self-current. Individual parts of the ring were
each screened by the central limb of the core against the
fields produced by the current in other sections of the ring.
At the time when the current in the ring reached a critical
value, a signal in the form of a sharp peak was induced in
the measuring winding. During the measurements, this peak
was kept as low as possible. At the instant when the peak
was reduced to zero on varying the primary current, the value
of I1 was recorded and Ic was found, Ic = n1 I1. More
details are given in [7, 13–15]. The critical current in the
sample having the initial size was measured at a number of
fixed temperatures. Then the sample was lathed and the critical
current was measured at the same temperatures.

The same technique was used for the critical temperature
determination. Only a sinusoidal signal was induced in the

Figure 2. Temperature dependence of the critical current in sample 1
for two families of cross-sections. Lines A, B, C, D correspond to
sections (in mm2) 2 (2.23 × 2.75), 6 (1.8 × 2.29), 8 (1.63 × 2.04), 12
(1.38 × 1.72), and lines a, b, c correspond to sections 3 (2.02 × 2.75),
7 (1.63 × 2.29), 11 (1.38 × 1.89), respectively. T0 = 77.33 K.

secondary coil when the temperature was higher than the
critical temperature. A distorted waveform showed up, in
the form of a coat-hanger, when the decreasing temperature
became slightly less than Tc (at constant amplitude of I1). The
appearance (or disappearance with increasing temperature)
of this waveform indicated that the critical temperature was
reached. The measuring current density in the sample was
always less than 10 mA cm−2.

The height (Y ) and width (X ) of sample 1 were varied
one after another (see figure 1). As a result two similar cross-
section families for the sample were obtained. For the first
family (odd-numbered sections, from 2.23 × 3.06 to 1.38 ×
1.89 mm2) the average value of the ratio X/Y was equal to
0.728 and for the second family (even-numbered sections, from
2.23 × 2.772 to 1.38 × 1.725 mm2), X/Y = 0.8. The critical
current in this sample was measured from 58.6 K to Tc (11
isotherms). The width of sample 2 was changed from 2.3 to
0.25 mm (13 cross-sections) at constant height (Y = 1.5 mm),
and the critical current in the sample was measured from
66.25 K to Tc (10 isotherms). Sample 3 was studied in the
temperature range from 4.2 K to Tc for ten cross-sections.
Initially the median (X ) of the trapezoid was varied from 2.56
to 1.02 mm at constant height Y (2.5 mm). Then the height
was varied up to 0.55 mm at constant median.

3. Results and discussion

Temperature dependences of the critical currents in samples
1–3 are shown in figures 2–4. Samples 1 and 2 consist of
single-phase material. The critical currents in the samples
increase smoothly as the temperature decreases. In sample 3
a superconducting transition in grains of Bi-2212 phase takes
place at temperatures below 80 K. A new Josephson net formed
by two phases, Bi-2223 and Bi-2212 advents. As a result,
an increase in curvature of Ic(T ) is noticed with decreasing
temperature. The cross-sections of this sample are not similar
trapezia, but the Ic(T ) curves are similar to each other.

It will now be seen that the expression for the critical
current can be written in the form f (T )G(X, Y ) where
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Figure 3. Temperature dependence of the critical current in sample 2
for cross-sections having various base widths (mm): 2.3 (A); 1.74
(B); 1.1 (C); 0.86 (D); 0.49 (E). T0 = 77.33 K.

Figure 4. Critical current in sample 3 as a function of the
temperature at constant height (2.5 mm) and various medians (in
mm): 2.3 (A), 1.78 (B), 1.28 (C); and at constant median (1.02 mm)
and various heights (in mm): 1.2 (D), 1.78 (E). T0 = 53.8 K.

G(X, Y ) is a homogeneous function. Let us introduce the
relative current IT by dividing the critical current experimental
values of one of the Ic(T ) curves by the value of the critical
current determined for the same section at temperature T0 (T0

is one of the experimental study values of T ):

IT = Ic(X, Y, T )/Ic(X, Y, T0). (1)

The values of IT obtained for different cross-sections of
each sample are so close that the corresponding points in
figures 2–4 cannot be distinguished on the scale adopted. For
this reason, the dashed curves in the figures are the smoothed
curves drawn through the mean values. The function IT (T )

goes to zero as the increasing temperature tends to Tc and
its curve is similar to the Ic(T ) curve of each sample. Like
the Ic(T ) curves, the function IT (T ) for sample 3 has a bend
associated with the superconducting transition in the Bi-2212
phase. Therefore, the function IT (T ) depends on specific
properties of the sample only and is independent of the cross-
sectional shape and dimensions.

Similar cross-sections of sample 1 yield two families of
sections. It would be interesting to find variations of the
critical current corresponding to these cross-sections. In other

Figure 5. Dependence of the relative critical current in sample 1 on
the relative size of the sample cross-section for different
temperatures. Odd sections: 83.15 K (�), 73.3 K (�), 66.2 K (♦),
58.65 K (+). Even sections: 86.3 K (�), 62.5 K (�). The quantities
corresponding to odd (3, 5, 7, 9) and even (2, 12) cross-sections (see
figure 1) were used as normalization values (i.e. X0, Y0, I0) for data
at the indicated temperatures.

words, we are interested in the dependence of the ratio IG =
Ic(Xi , Yi , T )/Ic(X0, Y0, T ) on ki , ki = Xi/X0 = Yi/Y0.
Index i is a section number (see figure 1). Experimental results
corresponding to the cross-sections marked 0 were used as
normalization values. The dependence of IG on k is shown
on figure 5 on a logarithmic scale for six isotherms of two
section families. The points may be all described using the
linear dependence

ln IG = p ln k.

Function IG(k) does not depend on the choice of
normalization values. Another choice of normalization values
results in the same curve. So we have

Ic(k X, kY, T ) = k p Ic(X, Y, T ). (2)

In the absence of an external magnetic field the critical
current in the random three-dimensional Josephson net of
weak links existing in HTSC ceramics follows a homogeneous
Euler function [16] with exponent p. Evaluating exponent
p for each isotherm of sample 1 we obtain a set of values
coinciding within confidence intervals. Hence these values can
be averaged. As a result we obtain p = 1.37 ± 0.01. Here and
below, confidence intervals are determined by using quantiles
of the Student distribution with a confidence probability of
0.95. Thus, the exponent of the Euler function does not depend
on the temperature, and hence the relative current IG does not
depend on temperature either and is determined only by the
geometrical arguments:

IG(X, Y ) = Ic(X, Y, T )/Ic(X0, Y0, T ). (3)

Since the critical current in our sample can be presented
as (1) and (3), it has the form

Ic(X, Y, T ) = f (T )G(X, Y ). (4)

Function f (T ) depends on the temperature and specific
properties of each sample only. G(X, Y ) depends on the
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Figure 6. Dependence of the critical current in sample 1 on the
sample width (X) and height (Y ) for different temperatures. Open
and solid symbols correspond to odd and even sections in figure 1.
Lines denoted by A–E correspond to the dependence on X at
temperatures (K): 62, 66, 77, 83, 86. Lines denoted by a–e
correspond to the dependence on Y at temperatures (K): 58, 69, 73,
77, 86.

sample cross-sectional sizes. Equations (2) and (4) show that
G(X, Y ) is a homogeneous Euler function. G(X, Y ) is the
symmetrical function of X and Y . This fact follows from the
absence of the external field. It makes no difference which
side of the cross-section is taken as the width (X ) and which
the height (Y ). Now we shall see that the critical current in a
random three-dimensional Josephson net not only corresponds
to the definition of a homogeneous function, but also is in
accord with all properties of such a function. The critical
current Ic(X, Y, T ) must satisfy the equations [16]

Ic(X, Y, T ) = X p F1 (Y/X) ,

Ic(X, Y, T ) = Y p F2 (X/Y ) .
(5)

In the case of two variables, only such functions are
homogeneous. Since the ratio of the sides for each family
of cross-sections of sample 1 is constant, functions F1(Y/X)

and F2(X/Y ) depend on temperature only. Figure 6 shows
the dependence of the critical current in sample 1 on X and
Y in double-logarithmic coordinates. It may be seen that our
experimental results are in accord with equation (5). Curves
Ic may be all approximated by a common power function,
Ic ∼ X p or Y p. The evaluation of exponent p for each
isotherm and each cross-section family gives a set of values
coinciding within confidence intervals (confidence probability
0.95). The deviations of the exponent values from the average
value are of random nature. So the exponent is independent of
the temperature. Index p is equal to 1.37 ± 0.01.

Let us prove that the critical current in our sample satisfies
the Euler differential equation [16]

X (∂ Ic/∂ X) + Y (∂ Ic/∂Y ) = pIc. (6)

That is, the function of the derivatives on the left-hand
side must be proportional to the critical current and the
factor p must coincide with the value obtained earlier. The
experimental results obtained for sample 1 make it possible to

Figure 7. Correspondence of experimental data obtained for sample
1 to the Euler equation (equation (6)). The standardized values Zn

and In are used (see the text). �, �, �, � correspond to isotherms
58.65, 73.3, 83.15, 89.4 K.

determine the derivatives for sections from 2 to 11 by using the
difference method (see figure 1). The results for four isotherms
are shown on figure 7. The left-hand side of equation (6) is
denoted by Z . In order to demonstrate the results obtained
at various temperatures the standardized values Zn and In are
used for each isotherm. Zn = Z/Z0, In = Ic/I0, Z0 and
I0 are intermediate values of Z and Ic at a given value of
the temperature. Figure 7 shows that our results satisfy the
Euler differential equation. Z is a linear function of the critical
current. The value of the factor p obtained for all isotherms is
equal to 1.34±0.04. This value coincides with the one obtained
earlier. The larger confidence interval is associated with the
errors arising from the evaluation of partial derivatives. Hence
the critical current in a random three-dimensional Josephson
net satisfies the definition of the homogeneous function and all
its properties. Note that the same experiment was performed
earlier [14]. However, in [14] the Bi2223 sample was studied
at 77.33 K only, and the confidence intervals were considerably
wider.

Thus function G(X, Y ) in equation (4) is the homoge-
neous function and independent of temperature. It is this func-
tion that contains information on the critical state in a Joseph-
son net. Therefore, it is very important to determine the func-
tion G(X, Y ) in every way. To this end we performed a spe-
cial comparative experiment. X (or Y ) was varied individually.
Figures 8 and 9 show the dependence of the critical current in
samples 2 and 3. The width of the rectangular sample 2 was
changed at constant height. The median of the trapezoid sam-
ple 3 was varied at constant height and then the height was var-
ied at constant median. As before, relative currents IG (dashed
curves in figures 8 and 9) are independent of the temperature
and choice of the normalization values. Another choice of
normalization values only displaces the IG curve. Thus, the
critical current can be presented as equation (1) or (3). This
means that the experimental values of the critical current sat-
isfy equation (4). It is necessary to state that the cross-sections
of these samples are not similar, but isotherms Ic(X), Ic(Y )

and curves IG for each sample look alike and smooth. No one
cross-section is preferred. The curves may be approximated by
a common power function Xr or Y r :

IG = G(X, Y )/G(X0, Y ) = (X/X0)
r , (7)

4
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Figure 8. Temperature dependence of the critical current in sample 2
on the widths of rectangular cross-section at various temperatures.
Lines A–E correspond to 66.25, 69.85, 77.33, 87.55, 101 K.

IG = G(X, Y )/G(X, Y0) = (Y/Y0)
r . (8)

Evaluating exponent r for samples 3 for each isotherm
at each fixed X0 and Y0 we obtain a set of values coinciding
within confidence intervals. The exponent value deviations
from the average value are of random nature, i.e., the exponent
is independent of temperature as well as the method of cross-
section change. The average value of r is equal to 0.69 ± 0.02
and close to p/2. In the case of sample 2, using equation (7)
we obtain r = 0.68 ± 0.01. The external field was absent
in our experiments, and so variables X and Y are absolutely
equivalent. Therefore, if we had changed the height (Y ) of
sample 2 rather than X , we would have obtained the same
result, i.e. equation (8). Using equations (7) and (8), we have
G(X, Y ) = G(X0, Y0) · (XY/X0Y0)

r . X0 and Y0 are arbitrary
and hence

G(X, Y ) = AXr Y r or G(X, Y ) = AX2r (Y/X)r .

(9)
It is obvious that G(X, Y ) is a homogeneous function of

X and Y , r = p/2, and we can write

Ic(X, Y, T ) = A f (T )X p/2Y p/2. (10)

Let us derive this equation from analytical consideration.
Let us have a long sample having rectangular or trapezoid
cross-section along the full length. The ratio Y/X of the
left part of the sample may be arbitrary, but for right part
X = Y = X0. Let Ic and Ic0 be the critical currents of the
left and right parts of the sample. Varying the sides X, Y, X0

we can reach the state when

Ic(X, Y, T ) = Ic0(X0, T ). (11)

Using equations (4), (5) we can rewrite equation (11):

X p F1(Y/X) = X p
0 F1(1). (12)

The properties and temperature of the sample are assumed
to be identical along the full length and so functions f (T )

canceled. If we arbitrarily change the height (Y ) of the left part
of the sample by a factor of k, then equation (11) is not true.

Figure 9. Temperature dependence of the critical current in sample 3
on the median (X , lines A–E) and the height (Y , lines a–c) of the
trapezoid cross-section at various temperatures. Lines A–E
correspond to 4.2, 22.4, 37.6, 63.7, 73.3 K. Lines a–c correspond to
4.2, 37.6, 63.7 K.

Now we change the sides of the right part (X0) by a factor of
K in such a way that the equality becomes valid again. This
time K is not arbitrary but is a function of k; then,

X p F1(kY/X) = K (k)p X p
0 F1(1). (13)

If we take into account equation (12), then we have

F1(kY/X) = K (k)p F1(Y/X). (14)

The definition of the homogeneous function is as
follows [16]: F(kz) = g(k)F(z), where k is an arbitrary
factor, and in general, g(k) is power function: g(k) = kq [16];
therefore, F(kz) = kq F(z). In our case, we see that K (k)p =
g(k) = kq and

F1(kY/X) = kq F1(Y/X).

So F1(Y/X) is a homogeneous function of its relative
argument with exponent q . This expression must be valid
for any k (including k = X/Y ); therefore, F1(Y/X) =
(Y/X)q F1(1). X and Y in the expression for the critical
current are equivalent. Let F1(1) = A. Using equation (5) we
find that q = p/2 and Ic(X, Y, T ) is given by equation (10).

Equation (10) includes the product of X and Y , i.e. the
area of the cross-section S; therefore we have

Ic(X, Y, T ) = A f (T )S p/2. (15)

Figure 10 shows the dependence of the critical current of
sample 3 on the cross-sectional area at various temperatures.
In this sample a random Josephson net at temperatures rather
more 70 K is formed by the grains of the superconducting
phase Bi-2223. At lower temperatures, the grains of the two
phases Bi-2223 and Bi-2212 produce different Josephson nets.
It is important to note that the curves corresponding to higher
temperatures (triangular signs ) are the same as the curves
corresponding to lower temperatures (triangular signs ). The
curves are similar to each other and may be approximated by
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Figure 10. Critical current in sample 3 at various temperatures as a
function of the cross-sectional area. Lines A–E correspond to
isotherms (right scale) at 4.2, 22.4, 37.6, 53.8, 68.0 K. Lines a–e
correspond to isotherms (left scale) at 73.7, 77.33, 81.0, 86.8, 93.3 K.
The curve IG (left scale) shows the run of the relative current
IG = Ic(S)/Ic(S0). S0 = 3.2 mm2.

equation (15) independently of the temperature range. The
dashed line IG = Ic(S)/Ic(S0) in figure 10 demonstrates
that IG is independent of the temperature and any specific
properties of the Josephson net. Curves Ic(S) and IG(S) for
samples 1 and 2 are identical to Ic(S) and IG(S) for sample 3.
And so the function IG(S) does not depend on the temperature,
or on the type of the Josephson net. Evaluating the exponent
p for sample 3 for each isotherm, we obtain a set of values
coinciding within confidence intervals. The deviations of the
value of the exponent from the average value are of random
nature, i.e., the exponent is independent of temperature as well
as the type of random Josephson medium existing in the sample
at a certain temperature. Index p is equal to 1.38 ± 0.02.
We had shown earlier [15] that Ic ∼ R p for samples having
round cross-section (R is the radius of the cross-section),
i.e. equation (15) is valid in this case too. For samples 1, 2, and
3 the average values of exponent p are equal to 1.37 ± 0.01,
1.36±0.02, and 1.38±0.02 respectively. These values coincide
within confidence intervals with each other and with the earlier
obtained value (p = 1.36 ± 0.01 [15]). We find the weighted
average of averages p = 1.37 ± 0.02. Summarizing the
results obtained here and earlier [14, 15] we may say that
the transport critical current in a random three-dimensional
Josephson net (namely, function G(X, Y )) is a homogeneous
function of the size or area of the cross-section with exponent
p. This exponent is a universal constant, i.e. it is independent
of the net type, temperature, cross-sectional shape and so on.
Function G(X, Y ) determines the critical state in the system.
It is quite possible that factor A in equation (10) and (15)
depends on the shape of the sample cross-section. Introducing
a relative current we eliminate the specific properties of the
sample, i.e. function f (T ), and multiplier A is eliminated at
the same time.

We have shown that the critical current in a random three-
dimensional Josephson net is a homogeneous function of the
cross-sectional size for any cross-sectional shape:

Ic(k X, kY, T ) = k p Ic(X, Y, T ). (16)

Now we will investigate properties of the critical current
density in such a system using this experimental fact. Let
us introduce a system of orthogonal coordinates. For such
cross-sections as circles, rectangles, ellipses and others that
are important for investigations and practice, zero must be
situated in the center of the geometrical figure. Let the domains
representing our cross-sections be �1 and �. In domain �1

point x1, y1 corresponds to point x , y in �. �1 and � are
similar domains and so x1 = kx and y1 = ky. Equation (16)
may be rewritten as∫

�1

∫
jc(x1y1) dx1 dy1 = k p

∫
�

∫
jc(xy) dx dy. (17)

Here jc is a critical current density. We consider the
infinitesimal area dS (dS = dxdy) as a physical infinitesimal
area. Its dimensions must be much less than the sample cross-
section dimensions or the dimensions of any domain under
consideration, but its dimensions are much greater than an
average cell dimension of the Josephson net, i.e. dS contains
a great number of weak links. In other words, from our point
of view the Josephson medium is a continuum. The change
of variables in the integration in the left part of equation (17)
gives ∫

�

∫ (
jc(kx, ky) − k p−2 jc(x, y)

)
dx dy = 0.

It was shown that equation (16) must be valid for any
shape of cross-section (for any domain �); hence

jc(kx, ky) = k p−2 jc(x, y). (18)

The critical current density in any random three-
dimensional Josephson net is a homogeneous function of the
coordinates and its index is equal to p − 2.

Let us consider the immediate corollaries.

(1) If ω1 and ω are closed similar domains in the interior of
the cross-section and any point x1, y1 in ω1 corresponds
to a point x , y in ω, then the critical current in ω1 may be
written as

ic(ω1) = k pic(ω). (19)

So the critical currents in similar domains differ by a factor
k p. If ω1 coincides with the sample cross-section, then

Ic = k pic(ω). (20)

(2) Writing the homogeneous function jc in the form of
equation (5) and using polar coordinates we have

jc = r p−2 j1(ϕ).

If the boundary curve of a domain situated on the cross-
section and the cross-section boundary are homothetic figures,
then the critical current density distribution on the curve is the
same as that on the cross-section boundary. For a cross-section
having piecewise-smooth boundary the statement may be made
for each sector bounded with a smooth curved boundary. Since
p = 1.37, then jc ∼ r−0.68. The critical current density
goes to infinity as r tends to zero. It must be noted that we
regard a three-dimensional Josephson net as a continuum and
our consideration cannot be used as r tends to a grain size.

6
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(3) The critical current density is a homogeneous function and
satisfies the Euler differential equation [16]:

x∂ jc/∂x + y∂ jc/∂y = (p − 2) jc. (21)

Therefore, the critical current may be written as Ic =
(1/(p − 2))

∫ ∫
�
(x∂ jc/∂x + y∂ jc/∂y)dxdy. If L is

a cross-section boundary curve, then transforming the
double integral to an integral over one cycle we have

Ic = 1

p

∮
L

x jc dy − y jc dx . (22)

The value of the transport critical current in a random
three-dimensional Josephson net is determined by values of the
critical current density on the cross-section boundary curve. If
ω is a closed domains in the interior of the cross-section and
M is its boundary curve, then

ic(ω) = 1

p

∮
M

x jc dy − y jc dx . (23)

Let us go into the question of the magnetic field induced
in a random Josephson net by the transport critical current. Let
us consider domains �1 and �. We write

∂ Hy(x1, y1)

∂x1
− ∂ Hx(x1, y1)

∂y1
= jc(x1, y1) (24)

∂ Hy(x, y)

∂x
− ∂ Hx(x, y)

∂y
= jc(x, y). (25)

Changing variables in equation (24) and using equa-
tions (18) and (25) we obtain

∂

∂x

[
Hy(kx, ky) − k p−1 Hy(x, y)

] − ∂

∂y

[
Hx(kx, ky)

− k p−1 Hx(x, y)
] = 0.

This equation must be valid for any point of any domain �

at any k. This is possible if the expressions in square brackets
are equal to zero at the same time:

Hx(kx, ky) = k p−1 Hx(x, y) (26)

Hy(kx, ky) = k p−1 Hy(x, y) (27)

H (kx, ky) = k p−1 H (x, y). (28)

Hence the value of the magnetic field induced by
the transport critical current in a random three-dimensional
Josephson net and the components of the field are
homogeneous functions of the coordinates. The exponent
equals p − 1. The value of the critical current flowing through
any domain � may by written as Ic = ∫ ∫

�
jc dx dy and

Ic = ∮
L H dl. In these expressions the integration procedure

does not deal with a temperature variable. So the expressions
for the critical current density and the magnetic field contain
the multiplier f (T ). As before, we can say that the magnetic
field distribution on a curve situated in the cross-section and
homothetic to the cross-sectional shape is the same as that on
the boundary of the cross-section. The value of the magnetic
field and its components go to zero as r tends to zero. All

values describing the critical state in the random net obey the
scaling law.

The distribution and value of the critical current density in
a granular system depend on the magnetic field. Bean [17, 18],
Kin and Anderson [19, 20] developed models for hard
superconductors; these and some other models [21, 22]
have long been used in order to clarify the effect of
magnetic field on the critical current density in ceramic
superconductors [4, 23–25]. This picture is useful but it
can hardly be said to account completely for the remarkable
properties of HTSC ceramics.

The critical current density depends on the magnetic
field: jc = jc(H ). On the other hand the transport critical
current density satisfies the Euler differential equation (21) and
the magnetic field for its part satisfies the Euler differential
equation containing the multiplier p − 1. So

d ln jc = p − 2

p − 1
d ln H

jc(H ) = QH
p−2
p−1 .

(29)

The critical current density is a power function of the
magnetic field value: jc ∼ H −1.7. It is clear that the integration
constant Q depends on the sample cross-sectional shape and
its overall dimensions. Q depends on the temperature as
f (T )1/p−1.

4. Conclusion

The transport critical current in any random three-dimensional
Josephson net existing in an HTSC ceramic can be presented as
the product of the temperature and size dependent factors. The
temperature factor f (T ) depends on temperature and specific
properties of a sample material. The size factor G(X, Y )

contains information on the critical state in a Josephson net.
The transport critical current depends on the cross-sectional
area, independently of the cross-sectional shape (accurate
within factor A). Values describing the critical state in a 3D
Josephson net satisfy the scaling law. The critical current
(namely, G(X, Y )) is a homogeneous function of the cross-
sectional size or area with exponent p, p = 1.37 ± 0.02.
The exponent is a universal constant. It does not depend on
temperature, specific sample properties, Josephson net type,
cross-sectional shape, and so forth. The critical current density
and induced magnetic field are homogeneous functions of the
coordinates. The exponents of the functions are p − 2 and
p−1. The common multiple f (T ) determines the temperature
dependence of the critical current, its density, and the induced
magnetic field. The current value depends on the values of
the critical current density on the cross-section boundary curve.
The critical current density is a power function of the magnetic
field.
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